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(Received 6 March 1998 and in revised form 3 August 1998)

In contrast to the Miles–Howard theorem for inviscid steady shear flow in stably
stratified fluids, explicit elementary time-periodic solutions of the Boussinesq equa-
tions are developed here which are unstable for arbitrarily large Richardson numbers.
These elementary flows are parameterized through solutions of a nonlinear pendulum
equation and involve spatially constant but temporally varying vorticity and density
gradients which interact through advection and baroclinic vorticity production. Exact
nonlinear solutions for arbitrary wave-like disturbances for these flows are developed
here and Floquet theory combined with elementary numerical calculations is utilized
to demonstrate instability at all large Richardson numbers. The dominant inviscid
instability for these non-parallel flows is a purely two-dimensional parametric in-
stability with twice the period of the elementary flow and persists for all Reynolds
numbers and the wide range of Prandtl numbers, 1 6 Pr 6 200, investigated here.
Similar elementary time-periodic solutions of the Boussinesq equations in a constant
external strain field are developed here which reduce to uniform shear flows in one
extreme limit and the time-periodic vortical flows in the other extreme limit. These
flows are stable in a strict sense for large Richardson numbers; however there is
transient large-amplitude non-normal behaviour which yields effective instability for
a wide range of Richardson numbers. For example, suitable initial perturbations
can amplify by at least a factor of fifty with exponential growth for short times for
Ri = 1, |σ| 6 0.5 and Ri = 5, |σ| 6 0.1, with σ the amplitude of the external strain.

1. Introduction
One of the basic analytical results for stably stratified fluid flows is the celebrated

Miles–Howard theorem (Miles 1961; Howard 1961). This theorem states that steady
shear flows V = (v(z), 0, 0) in an inviscid stably stratified fluid are linearly stable for
all Richardson numbers, Ri , satisfying

Ri > 1
4
, Ri =

N2(
∂v/∂z

)2
(1.1)

with N2 = −g(∂ρ/∂z)/ρb, the square of the buoyancy or Brunt–Väisälä frequency.
This criterion for stability is often interpreted and applied literally for time-dependent
flow fields in numerical modelling for the atmosphere or ocean. For example, a popular
turbulent eddy diffusivity used in numerical simulations in the atmosphere/ocean
community is the Lilly–Smagorinsky eddy diffusivity (Smagorinsky 1963; Lilly 1967)
where the turbulent eddy diffusivity is completely switched off and set to zero for
Ri > Ri > 1

4
with Ri of order unity. Recent use of this turbulent diffusivity in
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atmospheric science can be found in Bretherton et al. (1998) and several of the
references cited there; work by Siegel & Domaradzki (1994) and Lavelle & Smith
(1996) as well as numerous references in those papers, are recent examples of the use
of such eddy diffusivity in computations for physical oceanography.

With all of the above background, an obvious interesting question is the following
one: Are there time-dependent stably stratified flows which are unstable for Richard-
son numbers larger than 1

4
? The main goal of this paper is to build explicit elementary

time-dependent and non-parallel stably stratified flows which are unambiguously un-
stable for all (arbitrarily large) Richardson numbers. The existence of such examples
contrasts strongly with the Miles–Howard theorem for steady shear flows and provides
a strong warning signal for interpreting the Miles–Howard theorem indiscriminately
for time-dependent stably stratified flows. Earlier important work by Drazin (1977)
establishes that propagating unidirectional gravity waves are unstable for large local
Richardson numbers.

The elementary solutions of the stably stratified Boussinesq equations which are
unstable for all Richardson numbers are given by certain time-periodic flows with
spatially constant but temporally varying vorticity and density gradients (see § 2.3
below). These elementary exact solutions have the form

ρ= ρb + sin θ(t)x− cos θ(t)z,

v =


1
2
ω(t)z

0

− 1
2
ω(t)x

 ,

 (1.2)

written in the appropriate non-dimensional coordinates, where θ(t) represents the
angle between the density gradient and the (negative vertical) z-axis while the velocity
field is a time-varying vortex with axis along the y-direction. The strength of the
vortex ω(t) and the magnitude of the density gradient interact through advection and
baroclinic vorticity production (see §2.3 below) and define an exact solution of the
Boussinesq equations provided that ω(t) and θ(t) satisfy

ω(t)

2
=−dθ

dt
,

d2θ

dt2
=− sin θ(t).

 (1.3)

Thus, the exact solutions (1.2) are defined through the nonlinear pendulum equations
(1.3). With the preliminary results from § 2.3, we establish the linear and nonlinear in-
stability of these time-periodic flows in § 4 through analysis and elementary numerical
integration based on Floquet theory which is summarized in § 3.

We establish that these flows from (1.2) and (1.3) are unstable at all Richardson
numbers and that the dominant mode of instability is purely two-dimensional with
motion in the (x, z)-plane; furthermore, the modes of dominant linearized instability
involve parametric instability with a period of growth which is twice the period of
the underlying fluid flow defined in (1.2) and (1.3). Also, these flows remain unstable
even with finite viscosity and heat conduction effects with the same basic structure
of dominant instability as for the inviscid case for all Reynolds numbers and for
all Prandtl numbers investigated here, i.e. Pr , with 1 6 Pr 6 200. We remark that
the exact solutions (1.2) and (1.3) admit the following interpretation: Deflect the
horizontal isopycnal surface by an arbitrarily small initial angle, θ0, with |θ0| � 1
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and with dθ/dt|t=0 = 0. Then, the stably stratified fluid responds through baroclinic
vorticity production with time-periodic motions generating a small-amplitude vortex
defined by ω(t) through (1.2) and (1.3) and never deflects the isopycnal surface beyond
the small angle, |θ0|. Such flows have no overturning as discussed in § 2.3 yet are
unstable for arbitrarily small deflection angles through parametric two-dimensional
instability, even with finite viscosity and heat conduction. Of course the growth rate
of the instability decreases with increasing Richardson number.

How general beyond these flows given by (1.2) and (1.3) are fluid flows exhibiting
instability at Richardson numbers larger than 1

4
? In §2.4 we introduce basic large-scale

solutions of the Boussinesq equations with velocity given by

v =


1
2
(ω(t) + σ)z

0
1
2
(−ω(t) + σ)

 (1.4)

and corresponding spatially constant density gradient, b(t) = (b1(t), 0, b3(t))
T . The

constant value, σ, corresponds to an imposed large-scale strain flow. For the initial
value, ω(0) = σ, these elementary solutions are steady shear flows while for σ = 0, we
recover the basic time-dependent flows (1.2) and (1.3); thus, the elementary flows with
the structure (1.4) range between the two extreme cases of stability and instability at
large Richardson numbers discussed earlier. In § 2.4, we construct elementary time-
periodic solutions of the Boussinesq equations with the velocity field having the form
(1.4) with σ 6= 0.

In § 5, we study the linear and nonlinear stability of such solutions. In a strict sense,
we find stability of these flows for all large Richardson numbers in the sense that
wave-like perturbations eventually decay at large times. However, there is transient
large-amplitude non-normal behaviour (Farrell & Ioannou 1993) which can yield
effective instability for a wide range of Richardson numbers when this growth is
coupled with the inherent nonlinearity in the system. For example, suitable initial
perturbations amplify by at least a factor of fifty with exponential growth for short
times for

Ri = 1 and |σ| 6 0.5,

Ri = 5 and |σ| 6 0.1,

Ri = 10 and |σ| 6 0.05.

 (1.5)

In all of our discussion above, we have utilized the most conservative choice of
Richardson number, Ri, for time-dependent flows with this number always smaller
than the classical Richardson number; this Richardson number is discussed in detail
in §2.2.

The main technical ingredient for our linear and nonlinear stability analysis is a
straightforward generalization for the stratified Boussinesq equations of an important
construction due to Craik & Criminale (1986) of exact solutions of the homogeneous
Navier–Stokes equations involving large-scale flows with spatially constant gradients.
For the Boussinesq equations, the exact solution procedure for the large-scale flow is
summarized in § 2.1 while the equations for the superimposed wave-like disturbances
are presented in § 3. For the readers’ convenience, a detailed derivation of these
equations for Boussinesq solutions is presented in the Appendix of this paper. Over
the last few years, the basic technique utilized here has been very fruitful in discussing
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instability for homogeneous incompressible flows (Craik 1989; Craik & Allen 1992;
Lifschitz & Hameiri 1991). Uses of Floquet theory as well as suitable generalizations
for stability theory for homogeneous incompressible flows have been developed in
this context (Bayly 1986; Bayly, Holm & Lifschitz 1996; Forster & Craik 1996).

2. A family of elementary stratified flows
In this paper we investigate some stability properties of simple stratified flows,

satisfying the non-rotating Boussinesq equations

Dv

Dt
=−∇p− g

ρb
ρe3 + ν∆v,

div v= 0,

Dρ̃

Dt
= κ∆ρ̃,


(2.1)

where v is the flow velocity, ρ is the total density, p is the hydrodynamic pressure,
ρb is the constant reference fluid density, e3 is the unit vertical coordinate vector, ν
is the kinematic viscosity, and κ is the heat conductivity. The total density ρ is given
as the sum of the ambient density ρb and the perturbation density ρ̃. Below we use
the notation (x, y, z) or (x1, x2, x3) for the spatial coordinates when either is more
convenient in a particular discussion.

A simple but meaningful framework for this study is provided by a special family
of exact solutions to (2.1). These solutions consist of a large-scale piece, which has
a linear structure in space (but evolving in time) together with small-scale nonlinear
plane wave perturbations. In this section we will focus our attention on the large-scale
part. In §§ 3, 4 and 5 we will study the small-scale perturbations to these solutions.
Consider special spatially linear solutions of (2.1), with the form

v(x, t) =D(t)x+ 1
2
ω(t)× x,

ρ̃(x, t) = ρb + b(t) · x,
p(x, t) = 1

2
P̂(t)x · x,

 (2.2)

where D(t) is an arbitrary 3× 3 symmetric traceless strain matrix and ω(t) = curl v is
the vorticity, which is a function of time alone. The vorticity ω(t) has an equivalent
representation by a skew-symmetric matrix Ω(t),

Ω(t)h = 1
2
ω(t)× h, for any vector h. (2.3)

It follows from (2.2), that the vorticity ω(t) and the density gradient b(t) replace the
original variables v and ρ in the description of the flow field. In order to satisfy the
Boussinesq equations, the functions ω(t) and b(t) must satisfy the following equations:

dω(t)

dt
=D(t)ω(t) +

g

ρb

−b2(t)
b1(t)

0

 ,

db

dt
=−D(t)b(t) + 1

2
ω(t)× b(t).


(2.4)

The details of the derivation of these equations are presented in the Appendix.
Pressure plays the role of a Lagrange multiplier and is determined entirely by the
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incompressibility condition from D,ω, b by

−P̂ =
dD
dt

+D(t)2 + Ω(t)2 +
g

2ρb
(e3 ⊗ b+ b⊗ e3) , (2.5)

where ⊗ is the usual tensor product of two vectors.
All elementary solutions with the form in (2.2) formally have velocity and density

which become unbounded for large values of |x|; these elementary flows should
be considered as local Taylor approximations of more general stratified flow fields.
For homogeneous fluid flow, this point of view has been justified by formal WKB
techniques (Lifschitz & Hameiri 1991).

2.1. Basic large-scale flows

In this paper we consider special large-scale flows generated by (2.2) and (2.4) which
involve a single vortex located at the origin with ω(t) always perpendicular to the
(x1, x3)-plane, and distorted by a strain flow slanted at the 45◦ angle:

ω(t) = ω(t)e2, b(t) =

b1(t)
0

b3(t)

 ,

v =

(
0 1

2
(ω(t) + σ)

1
2
(−ω(t) + σ) 0

)(
x1

x3

)
.


(2.6)

The parameter σ in (2.6) is associated with the strength of the strain flow (jet).
Important special solutions of (2.6) are the set of equilibrium points ω(t) = σ. It is
easy to see that the corresponding flows are simple vertical shears of the horizontal
velocity v1 in the (x1, x3)-plane.

To close the formulation, we must select some reasonable initial conditions for
(2.6). An appropriate set is given by initially stable vertical stratification and some
initial strength of the vortex,

ω(0) = ω0, b1(0) = 0, b3(0) = −B0, B0 > 0. (2.7)

To non-dimensionalize the problem, we select the ambient density ρb, initial vertical
density gradient B0, and g to set the scales. Then, the variables in equations (2.6) and
(2.7) take the following non-dimensional form:

x→ ρb

B0

x̃, t→ t̃

N , b→ B0b̃, ω →Nω̃, σ →Nσ̃, v → Nρb

B0

ṽ,

in terms of the four non-dimensional numbers

N2 =
gB0

ρb
, Fr =

ω0

N , Re =
ρ2
bω0

νB2
0

, Pr =
ν

κ
. (2.8)

Here, N is the Brunt–Väisälä buoyancy frequency, Fr is the Froude number, Re is
the Reynolds number and Pr is the Prandtl number associated with this flow. It is
worthwhile mentioning that the Reynolds number involves a time scale determined
by the strength of the original vortex and a length scale determined by the large-scale
density variations.

In the remainder of this paper, non-dimensional variables replace dimensional
ones with all primes dropped. The Boussinesq equations assume the following non-
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dimensional form:

Dv

Dt
=−∇p− ρe3 + FrRe−1∆v,

div v= 0,

Dρ̃

Dt
= FrRe−1Pr−1∆ρ̃.


(2.9)

The non-dimensional form of the system (2.4) in the form (2.6) and initial conditions
(2.7) is given by

ω̇ = b1,

ḃ1 = 1
2
(−σ + ω)b3,

ḃ3 =− 1
2
(σ + ω)b1,

 (2.10)

ω(0) = Fr; b1(0) = 0; b3(0) = −1. (2.11)

2.2. The Richardson number for time-dependent flows

In this paper, we study how the stability properties of stratified non-stationary
flows depend on the Richardson number. First of all, we need to properly define a
Richardson number for the elementary time-dependent flows in § 2.1. In the stationary
case, the Richardson number measures the square of the ratio of time scales associated
with shearing motion and buoyancy. The natural scale for the buoyancy time is
given in units inversely proportional to the time-dependent effective Brunt–Väisälä
frequency

N2(t) = − g

ρb

∂ρ̃(x, z, t)

∂z
. (2.12)

It is not so straightforward, however, to select a scale associated with the shearing
time. It is possible to suggest two competing definitions for a dynamic Richardson
number given by

Ri 1(t) =
N2(t)(
∂vH/∂z

)2
, Ri 2(t) =

N2(t)

|∇× v|2 + trD2
. (2.13)

The Richardson number Ri 1, is the standard one used for time-independent shear
flows while Ri 2(t) generalizes this quantity naturally to flows with varying vorticity
and strain. We note that Ri 2 satisfies Ri 2 < Ri 1, so that this is a more conservative
choice for deciding instability in time dependent flows. We utilize the generalized
Richardson number Ri 2(t) in all of our discussion below and denote this quantity
by Ri (t). In order to compare different time-dependent flows, we will need to select
some ‘typical’ value of the Richardson number. It is quite natural to select the overall
minimum of the function,Ri = min Ri (t), as the most conservative choice for stability
studies of time-dependent flows. This is exactly what we do in this paper.
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2.3. A vortex in stably stratified flow

As a first example of the large-scale flows (2.6) we consider a single vortex with no
external strain field, that is, σ = 0, so that

ω(t) = ω(t)e2; b(t) =

b1(t)
0

b3(t)

 ;

v =

(
0 1

2
ω(t)

− 1
2
ω(t) 0

)(
x1

x3

)
.


(2.14)

In this example, the fluid is engaged in circular motion about the origin, caused by
a single vortex with intensity changing in time due to baroclinic vorticity production.
The equations of motion in this case simplify to

dω

dt
= b1,

d

dt

(
b1

b3

)
=

(
0 1

2
ω(t)

− 1
2
ω(t) 0

)(
b1

b3

)
,

 (2.15)

with the same initial conditions (2.11) as before. Since the matrix describing the
evolution of b is skew-symmetric, the length of the vector b remains constant.
Therefore we can introduce the phase variable θ(t), so that(

b1

b3

)
=

(
sin θ(t)
− cos θ(t)

)
. (2.16)

Using the first equation of (2.15), we reinterpret the last two equations in (2.15) as
describing the evolution of the phase,

dθ

dt
= −ω(t)/2,

dω

dt
= sin θ(t). (2.17)

Taking one more derivative, we reduce this system to the pendulum equation

2
d2θ

dt2
= − sin θ(t) (2.18)

with conserved energy given by the Hamiltonian

H = θ̇2 − cos θ. (2.19)

The first question in the context of stability analysis for these elementary vortex
motions is how the overturning of the fluid is related to the pendulum dynamics and
the Richardson number. Clearly, overturning occurs when b3 becomes negative. For
the ‘pendulum’ motion, it can happen, according to (2.16), for

cos θ(t) < 0. (2.20)

Only strong enough oscillations can cause overturning of the initially stably stratified
fluid, and the initial strength of vorticity ω0 determines the amplitude of oscillations.
One easily finds from the first equation in (2.17) and the conservation of energy (2.19)
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Figure 1. Elementary vortical flows represented on the phase portrait of a simple pendulum. Bold
contours, H0 = 0, separate the flows without overturning (located inside the contours) for Ri > 1

4

and with overturning (located outside the contours) for Ri < 1
4
.

that the overturning criterion (2.20) can take place only when

|θ̇(0)| = 2
∣∣∣ω0

N
∣∣∣ > 1. (2.21)

We are now ready to relate this criterion for overturning to the dynamic Richardson
number, Ri, introduced in §2.2. The time-dependent Brunt–Väisälä frequency, N(t),
has a simple sinusoidal form and the vorticity ω can be obtained from the first
equation of (2.17) and the conservation of energy (2.19), so that the Richardson
number is equal to

Ri (t) =
N2(t)

|∇× v|2 =
cos θ(t)

4(H0 + cos θ(t))
. (2.22)

The pendulum energy,H0, is conserved during oscillations and is entirely determined
by the initial vorticity viaH0 = θ̇2(0)− 1 and (2.17). It is easy to see from (2.22) that
the Richardson number attains its minimum at time t = 0,

Ri = Ri (0) =
N2(0)

ω2
0

=
N2

ω2
0

6 Ri (t), (2.23)

while the phase θ(t) varies between θmin = − arccos
(
1− 1/(4Ri)) and θmax =

arccos
(
1− 1/(4Ri)), according to (2.19). It is easy now to formulate the overturning

condition (2.21) in terms of the Richardson number Ri:
flows with Ri > 1

4
never overturn; the energy H0 takes negative values;

all flows with Ri < 1
4

do overturn; the energy H0 takes positive values.

 (2.24)

The last observation brings our choice of Richardson number for these flows to be
analogous with the famous 1

4
result of Miles (1961) and Howard (1961).
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The phase portrait described by (2.17) is shown in figure 1. To find the period for
each closed orbit, it is sufficient to integrate (2.19) by quadrature

T = 4

∫ θs

0

dθ

(cos(θ)− cos(θs))
1/2
, (2.25)

where θs is the maximum deflection of the pendulum.

2.4. A vortex in a strain flow

A more general example of elementary solutions is provided by adding a 45◦ rotated
strain field in the (x1, x3)-plane to the single vortex flow described in the previous
section. Equations (2.10) have an integral of motion

b3 + 1
2
σω + 1

4
ω2 = −1 + 1

2
σFr + 1

4
Fr2. (2.26)

Using this integral, we reduce the size of the system by one, eliminating b3, so that
the reduced system becomes

ω̇ = b1,

ḃ1 = 1
2

(−σ + ω)

(
C− σ

2
ω − ω2

4

)
,

 (2.27)

with C determined by the initial conditions,

ω(0) = Fr; b1(0) = 0; C = −1 +
σFr

2
+

Fr2

4
. (2.28)

Solutions to (2.27) are closed trajectories in the (ω, b1)-plane. In contrast to the
vortex flows (2.14), the trajectories can cross now, being just projections of full three-
dimensional phase-space trajectories, since the parameter C depends on the initial
conditions. Hamiltonian structure on its own is not crucial for this problem. However,
it is quite important for the stability analysis to be able to compute the period
of solutions to (2.27). The period can be computed with the help of a conserved
Hamiltonian HFr;σ for (2.27), which can be introduced in the following way:

HFr;σ(ω, b1) =
b2

1

2
+ V (ω), (2.29)

V (ω) =
ω4

32
+
σω3

24
− 1

4

(
C(σ,Fr) +

σ2

2

)
ω2 +

σC(σ,Fr)

2
ω. (2.30)

This Hamiltonian arises because the 2 × 2 system (2.27) describes the motion of a
particle in a quartic potential inside a well bounded by the two roots of V (ω)−V (Fr) =
0 straddling the ‘centre’ ω = σ. For each initial value of the vorticity, Fr , the shape
of the potential and location of the roots is different, reflecting the dependence of C
on the initial conditions. The equilibrium states

ω = σ, b1 = 0, b3 = −1, (2.31)

correspond to simple vertical shears of the horizontal velocity v1.
The period of motion along trajectories in the (ω, b1)-plane can be found in terms of

elliptic integrals (Tabor 1989). If we represent function V (ω)−V (Fr) as the following
product:

V (ω)− V (Fr) = 1
32

(ω − r1)(ω − r2)(ω − r3)(ω − r4), (2.32)
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B

Figure 2. Elementary flows with and without overturning, parameterized by the Froude number,
Fr , and the strain parameter σ. The region between the top bold curve and the bottom bold curve
has no overturning. Lines A and B coincide with parts of the bottom and the top bold curves
respectively. The line Fr = σ corresponds to simple shears.

and note that for |σ| < 1 only two of the roots (r1 and r2) are real, with the other
two a complex conjugate pair, then we can express the period of motion in terms of
the following constants:

R1 = ((r1 − r3)(r1 − r4))1/2 ; R2 = ((r2 − r3)(r2 − r4))1/2 ,

κ2 =
(r1 − r2)2 − (R1 − R2)

2

4R1R2

; Ω = ±
(
R1R2

32

)1/2

,

K(κ) =

∫ π/2

0

(1− κ2 sin2 ξ)−1/2dξ; T =
4K(κ)

|Ω| .


(2.33)

We have numerically investigated the occurrence of overturning in these elementary
solutions as a function of the strain parameter σ. The regions where elementary
solutions described by (2.27) and (2.28) present overturning and the boundaries
separating these regions from the stably stratified solutions are shown in figure 2.

The transition from stably stratified flow for all times to flows with overturning
occurs along the bold curves in this figure. It is easy to show that the left part of
the top curve and the right part of the bottom curve coincide with straight lines
B and A, with equations Fr + σ = ±2. For further insight, we present a plot of
the Richardson number Ri (t) evolution (figure 3) for a stable solution located in
the (Fr , σ)-plane near the boundary of the region where solutions overturn (shown
in figure 2). The figure clearly shows that the graph of Ri (t) has slope zero where
Ri (t) = 0. This observation along with the definition of Richardson number given in
(2.13) suggests that the vertical component of the density gradient b3(t) of borderline
solutions vanishes together with its first derivative,

b3(t
∗) = 0,

db3

dt
(t∗) = 0. (2.34)
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Figure 3. Evolution of a typical dynamic Richardson number Ri 2(t) for an elementary solution
near the boundary of the region without overturning in the (Fr , σ)-plane at σ = 0.7, Fr = −2.7.
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Figure 4. Level curves of the minimum Richardson number Ri for elementary flows.
The nested contours, Ri = 0.1, 0.25, 3 are labelled.

It follows then from (2.26) that

b3(t) = −1 +
σFr

2
+

Fr2

4
− σ

2
ω(t)− ω2(t)

4
= 0. (2.35)

After elimination of ω from (2.34) we get

(Fr + σ)2 = 4, (2.36)

which is the equation for lines A and B.
To complete the discussion, we present figure 4, which shows the level lines of
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the Richardson number Ri, defined as the absolute minimum of Ri (t), given by the
second formula of (2.13).

In conclusion, we would like to mention that the exact solutions described in this
section satisfy the Boussinesq equations (2.1) either with or without viscosity and heat
conduction, since they have a linear spatial structure.

3. Exact nonlinear stability analysis
In the previous section we studied in detail the construction of elementary exact

solutions to the nonlinear Boussinesq equations without rotation. We have also
introduced a global Richardson number for such flows and generalized it for the
time-dependent case. Finally, we tied this Richardson number to considerations
regarding overturning of the density profile. In this section we introduce a second
family of exact solutions for (2.1), in addition to the one discussed above. Solutions of
the second family are in the form of nonlinear plane waves. Remarkably, as developed
in the Appendix, the quasi-linear approximation is exact for the superposition of two
solutions of this type (Craik & Criminale 1986). This property allows us to treat
plane wave solutions as nonlinear perturbations of the elementary flows described
in § 2. Even though the elementary flows remain stably stratified, they can be (and
often are) unstable to these small-scale perturbations. Stability analysis, therefore,
becomes extremely important, providing clear examples of the relationship between
overturning and the dynamic Richardson number in these flows.

To fix the ideas, we introduce the following family of plane wave perturbations:

v∗(x, t) =A(t)F(α(t) · x),

ρ̃∗(x, t) =B(t)F(α(t) · x),

p∗(x, t) = P (t)G(α(t) · x),

 (3.1)

where α is the wave vector, associated with a plane wave, A(t), B(t) and P (t) are
the nonlinear perturbation velocity, density and pressure amplitudes respectively. The
functions F(s) and G(s) define the shape of the plane wave; they are always related
to each other in a simple way: G′(s) = F(s). Solutions defined by the superposition of
(2.2) and (3.1) have the form

v(x, t) = vl + v∗ = D(t)x+ 1
2
ω(t)× x+ A(t)F(α(t) · x),

ρ̃(x, t) = ρ̃l + ρ̃∗ = ρb + b · x+ B(t)F(α(t) · x),

p(x, t) = pl + p∗ = 1
2
P̂(t)x · x+ P (t)G(α(t) · x),

 (3.2)

and satisfy the Boussinesq equations as long as, in addition to (2.4), the following
equations hold:

dα

dt
= −V T (t)α(t),

dA

dt
= −V (t)A(t) + α

2(V T (t)α(t) · A(t))

|α|2 +
g

ρb

[
α3

|α|2 α− e3

]
B(t)− νk2|α|2A,

dB

dt
= −A(t) · b(t)− κk2|α|2B.


(3.3)

See the Appendix for a detailed derivation of these equations, where it is also shown
that only sinusoidal waves with F(s) = sin(ks + φ0) satisfy the Boussinesq equations
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(2.1) with non-zero viscosity and heat conduction, while an arbitrary wave profile
F(s) is possible when these diffusive terms vanish.

Next, we non-dimensionalize (3.3) in a fashion consistent with the non-
dimensionalization of the elementary flows (2.8) from § 2. To set the scales, we
again utilize the ambient density ρb, the initial value of the vertical density gradient
B0, and g. With this choice, the non-dimensional variables are

α→ B0

ρb
α̃, A→

(
gρb

B0

)1/2

Ã, B → ρbB̃.

Since only non-dimensional variables will be used throughout the rest of the paper,
we will drop the tildes. Equations (3.3) take the following non-dimensional form:

dα

dt
= −V T (t)α(t),

dA

dt
= −V (t)A(t) + α

2(V T (t)α(t) · A(t))

|α|2 +

[
α3

|α|2 α− e3

]
B(t)− FrRe−1k2|α|2A,

dB

dt
= −A(t) · b(t)− FrRe−1Pr−1k2|α|2B.


(3.4)

We will discuss now in some detail the methods we will use to investigate the stability
of the elementary solutions from § 2 to the nonlinear perturbations in (3.1).

3.1. Some background facts

The functions ω and b, defining the elementary solutions (2.2) are periodic functions
of time in all examples considered in this paper, with the period computed according
to either (2.25) or (2.33). We will show in § 4 that for all flows generated by a single
vortex with σ = 0 in (2.15), the time evolution of a perturbation wave vector α can
be expressed in terms of a large-scale phase θ (introduced in (2.16)) in a very simple
form, being a periodic function of time itself. It is easy to see that the system (3.4)
then becomes linear in A and B with coefficients periodic in time. We will use Floquet
theory, designed especially for such equations to study the stability of perturbations.
Here we list several facts useful for the stability analysis (Hochstadt 1975).

Fundamental matrix. For any non-autonomous linear system of ordinary differential
equations dx/dt =A(t)x one can define a fundamental matrix R(t) which solves

R′ =A(t)R, R(0) = I . (3.5)

Then any solution of a general initial value problem

x′ =A(t)x, x(0) = x0 (3.6)

can be written as x(t) =R(t)x0.
Liouville’s Theorem states that for any flow, described by a linear system with time-

dependent coefficients, the determinant of the fundamental matrix can be expressed
in terms of trace of the system matrix,

detR(t) = exp

∫ t

0

tr A(s) ds. (3.7)

In §§ 4.1 and 4.2 the matrix A(t) is 3 × 3 with coefficients periodic in time and zero
trace. Liouville’s theorem applied to such matrices implies that detR(T ) = 1.
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Periodicity. Floquet theory says that for any T -periodic matrix A(t) there exists
matrix P(t) and constant matrix F such that

R(t) =P(t)eFt, P(t+ T ) =P(t). (3.8)

Since P(t + T ) = P(t) and R(T ) = P(T )eFT = eFT it suffices to show that all
eigenvalues of eFT are not greater than 1 to prove stability and to find an eigenvalue
larger than one to have instability.

Ertel’s Theorem and eigenvalues. In this part we will show, using Ertel’s theorem
about conservation of potential vorticity, that one of the eigenvalues of the funda-
mental matrix R(t) used in our construction is equal to 1. Note that for the particular
type of flow introduced in (3.2), potential vorticity assumes the following form:

q = (ωtotal(x, t) · ∇ρ(x, t)) = ((0, ω, 0) + (α× A)F ′) · ((b1, 0, b3) + BF ′α)
= α2ωB + (α× A) · (b1, 0, b3), (3.9)

where · stands for the usual scalar product of two vectors. Ertel’s theorem states that
potential vorticity, q, computed in the formula written above must be time invariant.
Note that q is a linear function of the amplitude functions A(t) and B(t) from (3.2),
with the coefficients depending on the mean flow parameters ω(t), b1(t), b3(t) and also
α(t). These parameters do not depend on A(t) and B(t) and can be shown to be
periodic in time (it easily follows from the Hamiltonian structure of (2.27) and from
(4.2) below). In all cases considered in this paper, A2(t) decouples from the system
(3.3). Therefore, it suffices to consider a 3× 3 system for the functions A1(t), A3(t) and
B(t) alone, with the appropriate 3× 3 fundamental matrix R(t). To conclude, we can
write Ertel’s theorem for an arbitrary solution (A1(t), A3(t), B(t)) = R(t)x0, with an
arbitrary initial condition x0, as

(e(t) · R(t)x0) = η, (3.10)

where e(t) is a certain T -periodic vector function and R(0) = I . It follows then that

(e(0) · x0) = (e(0) · R(0)x0) = q(0) ≡ q(T ) = (e(T ) · R(T )x0)

= (e(0) · R(T )x0) = (RT (T )e(0) · x0). (3.11)

Since the last formula is valid for any x0 we deduce that RT (T )e(0) = e(0); therefore,
RT (T ) has the eigenvalue 1 in its spectrum, with e(0) as a corresponding eigenvector.
Thus, for the two other eigenvalues λ1, λ2, we have

1 + λ1 + λ2 = trR(T ),

λ1λ2 = detR(T ) = 1,

which yields the following expression for the eigenvalues:

λ1,2 =
trR(T )− 1± ((1− trR(T ))2 − 4

)1/2

2
. (3.12)

The last formula implies that the eigenvalues form a complex conjugate pair when the
discriminant is negative. This case corresponds to stability. In order to get instability,
the discriminant must be positive, i.e.

|trR(T )− 1| > 2. (3.13)

In the borderline case |trR(T ) − 1| = 2 the predictions of Floquet theory (neutral
stability) need to be checked by a separate consideration.
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Numerical evaluation of a singular integral. In the next sections, we integrate (3.4)
to determine stability or instability according to the above criterion. This note deals
with computation of the period of periodic solutions to (2.15) using formula (2.25).
This formula provides an exact answer; however, it is not appropriate for practical
computations, since the integrand becomes singular near the right-hand limit of
integration θ = θs. In order to bypass this problem, we propose to separate the
singular and regular parts of the integral:∫ θs

0

dθ

(cos(θ)− cos(θs))
1/2

=

∫ θs−δ

0

dθ

(cos(θ)− cos(θs))
1/2

+

∫ θs

θs−δ
dθ

(cos(θ)− cos(θs))
1/2
.

The first of the two integrals on the right-hand side can be computed with any of the
standard integrating procedures (e.g. trapezoidal rule with Romberg extrapolation or
Simpson rule). For the singular integral we propose to use the power series expansion∫ θs

θs−δ
dξ

((cos(θs − ξ)− cos(θs)))
1/2

=

∫ δ

0

dξ

(cos(θs − ξ)− cos(θs))
1/2

=
1

(sin(θs))
1/2

{
2 δ1/2 + 1

6
δ3/2 cot(θs) + 1

5
δ5/2

(
1
6

+ 3
16

cot2(θs)
)

+ 1
7
δ7/2

(
1
12

cot(θs) + 5
64

cot3(θs)
)

+ 1
9
δ9/2

(
1
80

+ 3
64

cot2(θs) + 35
1024

cot4(θs)
)}

+ O(δ11/2).

This formula can be extended to include higher powers in δ, if greater accuracy is
desired. The threshold value δ separating regular and singular parts of the integral is
determined experimentally to ensure fastest convergence.

For direct numerical simulations of (3.4) we have used the fourth-order Kapp–
Rentrop method for stiff differential equations (Press et al. 1992) with adaptive time
step and replaced it with fourth-order Runge–Kutta when (3.4) did not present stiff
behaviour.

4. Instability at large Richardson numbers
In this section we discuss how stability properties of certain non-stationary flows

depend on the Richardson number. In many time-dependent problems it is implicitly
assumed that stability occurs at Richardson numbers bigger than 1

4
. Here we present

simple but very instructive examples involving the simple vortex flows in stable
stratification described earlier in § 2.3, where such a criterion does not work and, in
fact, instability occurs for arbitrarily large Richardson numbers. We explicitly show
the unstable modes and discuss the type of instability observed. We also study the
influence of viscosity and heat conduction on these stability properties.

The simple vortex with stable stratification

We numerically investigate the stability of large scale stably stratified flows generated
by the simple vortex in (2.14). Recall that we established in § 2.3 that these flows cause
no overturning, provided the Richardson number is greater than the ‘classical’ value of
1
4
. We investigate the behaviour of the nonlinear plane wave perturbations in (3.1) for

these solutions. This study reveals that appropriate amplitudes of the perturbations
introduced by (3.1) yield growing modes for any arbitrarily large Richardson number.
First, we discuss inviscid flows with no heat conduction and show that all wavelengths
are subject to instability. In the second situation, we discuss instability with viscosity
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and heat conduction added and show that the influence of Reynolds and Prandtl
numbers only limits the bandwidth of wave vectors that carry unstable perturbations.
In both cases these flows always have exponentially growing oscillations with twice
the period of the underlying vortex motion. Such growth is the typical signature of a
parametric instability.

4.1. Inviscid instability

For the simple vortex flows (2.14)–(2.25) from § 2.3 the equations for perturbation
variables α,A and B in (3.4) take the following form:

α̇1 = 1
2
ω(t)α3, α̇2 = 0, α̇3 = − 1

2
ω(t)α1,

Ȧ1 = − 1
2
ω(t)A3 +

2

|α|2
(
−ω(t)

2
α3A1 +

ω(t)

2
α1A3

)
α1 +

α3α1

|α|2 B,

Ȧ2 =
2

|α|2
(
−ω(t)

2
α3A1 +

ω(t)

2
α1A3

)
α2 +

α3α2

|α|2 B,

Ȧ3 = 1
2
ω(t)A1 +

2

|α|2
(
−ω(t)

2
α3A1 +

ω(t)

2
α1A3

)
α3 +

(
α2

3

|α|2 − 1

)
B,

Ḃ = −b1A1 − b3A3.


(4.1)

The first three equations of (4.1) are independent of the rest and have the following
general solution:

α(t) = α0

 sin(φ) sin(θ(t) + θ0)
cos(φ)

− sin(φ) cos(θ(t) + θ0)

 , α0, θ0 and φ arbitrary constants, (4.2)

where θ(t) is the phase variable defined in (2.16). Next, we notice that the equations
for the perturbation amplitudes A, B include only homogeneous terms in α. Thus, the
length |α|2 of the wave vector can be set equal to unity without any loss of generality.
It is clear from (4.1) that the equation for A2 decouples and can be integrated
independently after A1, A3 and B have been determined. In view of these remarks, the
system in (4.1) reduces toȦ1

Ȧ3

Ḃ

 =

 −ωα1α3 (α2
1 − 1

2
)ω α1α3

(α2
3 − 1

2
)ω ωα1α3 α1α3

−b1 −b3 0

A1

A3

B

 , (4.3)

where the large-scale solution ω, b1, b3 is known from the solution of the pendulum
equation (2.18) via (2.16) and (2.17). From (4.2) with α0 = 1, the perturbation wave
vector α has unit length and depends on the phase θ(t), with two arbitrary angular
parameters θ0 and φ. The angle φ determines the deviation of the perturbation
wave from the (x1, x3)-plane (that of unperturbed motion), while θ0 defines the initial
position of the wave vector in the (x1, x3)-plane. The system of equations (4.3) for
A1, A3, B is linear with coefficients periodic in time, which depend on the known
functions ω, b1, b3 as well as on the parameters φ and θ0 and is perfectly suited for
the Floquet theory discussed in §3.1.

To make the analysis easier, we notice that the linear system in (4.3) is traceless.
This implies that the product of all three eigenvalues of the fundamental matrix is
equal to unity. We showed in § 3.1 that conservation of potential vorticity implies that
one of the eigenvalues is equal to 1. Therefore, the stability check can be reduced
to the verification of just a single number, the fundamental matrix trace. According
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Figure 5. Fundamental matrix trace, trR(t), as a function of initial orientation of the perturbation
wave vector for the vortical elementary flow with Richardson number Ri = 1 in (a) and Ri = 7 in
(b). The contour lines separate regions of stability (with trR < 2) from regions of instability (with
trR > 2).

to the criterion in (3.13), when this trace is greater than 2, plane wave perturbations
cause instability of the basic motion, while a trace smaller than 2 corresponds to
stable perturbations. One can compute the growth rates, once the fundamental matrix
trace is known, according to the following formula from (3.12):

λ =
trR(T )− 1± ((1− trR(T ))2 − 4

)1/2

2
, (4.4)

where R denotes the fundamental matrix.
Figure 5 presents the stability regions in parameter space (θ0, φ) for two different

values of Richardson number, Ri = 1 and Ri = 7. The regions with trace bigger
than 2 on this diagram correspond to unstable plane wave perturbations of vortex
motions. Clearly, the most prominent instabilities are located along the φ = π/2
lines on these diagrams. According to (4.2), perturbations with φ = π/2 are purely
two-dimensional in the (x1, x3)-plane.
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Figure 6. Regions of instability, as the Richardson number varies, with fundamental matrix trace
larger than 2, for two-dimensional perturbations in the (x1, x3)-plane. The coordinate axes are θ0

and Ri, respectively.
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Figure 7. Maximum fundamental matrix trace for large values of the Richardson number Ri.

Since instabilities presented by the two-dimensional perturbations are the strongest,
we study them separately. Figure 6 shows regions of instability for two-dimensional
perturbations of single vortex flows with Richardson numbers varying from 1

4
to

8. Although unstable parts in the θ0-direction shrink at larger Richardson num-
bers, they never disappear. In fact, we were able to check this statement for huge
values of Ri. In figure 7 we plot the fundamental matrix trace for (4.3) versus
Richardson number reaching very large values of order 106. As before, trR > 2
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Figure 8. Amplitudes of the horizontal velocity perturbation undergo exponential growth in time
via parametric instability.

is the instability condition. Even though the growth rates become extremely small
at these large Richardson numbers, nevertheless there is unambiguous evidence for
instability.

To conclude our discussion, we comment on the physical nature of the instabil-
ities discussed above. As a typical case, we chose a two-dimensional perturbation
of a single vortex with Ri = 20. Figure 8 shows the time evolution of the ampli-
tudes of the two-dimensional perturbation velocities A1 and A3. The perturbation
is two-dimensional, with θ0 picked at its most unstable value (at the middle of the
instability strip located near θ0 = 2.75 in figure 6), while the initial conditions were
taken along the unstable eigenmode of (4.3). Figure 8 clearly presents exponentially
growing oscillations. Five growing oscillations occur during ten oscillations of the
underlying basic ‘pendulum’ flow and such behaviour is a typical signature of para-
metric instability. The visualization of the flow field (omitted here for brevity) suggests
that local overturning will develop from the instabilities in the basic flow, even with
Ri = 20. Of course, we expect that the fully nonlinear evolution of perturbations of
the complete plane wave solutions in (3.2) is subject itself to nonlinear instability, so
figure 8 has to be interpreted as demonstrating only linear instability of the basic
state. Examples of such nonlinear instability can be found in Lombard & Riley
(1996).

4.2. Instability with viscosity and heat conduction

As we have mentioned before, the elementary exact solutions described in § 2 are
insensitive to the terms associated with viscosity and heat conduction. Therefore, we
can use the same single vortex solutions (2.14) as the basic motion. The equations
for perturbations amplitudes, however, are modified in the presence of Reynolds
and Prandtl numbers, as described in (3.4). The wave profiles are restricted to the
sinusoidal form F(y) = sin(ky + φ0) and several extra terms have to be included in
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the equations

Ȧ1 =− 1
2
ωA3 +

α1

α2
0

(−ωα3A1 + ωα1A3) +
α3α1

α2
0

B − FrRe−1k2α2
0A1,

Ȧ3 = 1
2
ωA1 +

α3

α2
0

(−ωα3A1 + ωα1A3) +

(
α2

3

α2
0

− 1

)
B − FrRe−1k2α2

0A3,

Ḃ =−b1A1 − b3A3 − FrPr−1Re−1k2α2
0B,


(4.5)

where k is the wavenumber. Expressions (4.2) can be used for the wave vector α.
Now we cannot simply dismiss the wave vector length, α0, as irrelevant, as we did in
the inviscid case of § 4.1. However, certain reduction in the number of independent
parameters is also possible for (4.5).

Clearly, the wave vector length α0 is not an independent parameter. It enters (4.5)
either as a part of a kα0 product or through homogeneous terms in α. Therefore, we
can assume without a loss of generality that α0 = 1 and use k as the wave vector
length. Note also that the Reynolds number Re enters (4.5) only as a part of a ratio
k2/Re. Denoting this ratio by µ, we rewrite (4.5) as

Ȧ1 =− 1
2
ωA3 + α1 (−ωα3A1 + ωα1A3) + α3α1B − FrµA1,

Ȧ3 = 1
2
ωA1 + α3 (−ωα3A1 + ωα1A3) +

(
α2

3 − 1
)
B − FrµA3,

Ḃ =−b1A1 − b3A3 − FrµPr−1B,

 (4.6)

with

α =

 sin(φ) sin(θ(t) + θ0)
cos(φ)

− sin(φ) cos(θ(t) + θ0)

 . (4.7)

The parameters in the system above are θ0, φ, µ,Ri,Pr , where the Froude number Fr
is related to the Richardson number via Ri = 1/Fr2, according to (2.8) and (2.23).
The first two parameters, θ0 and φ, define the position of the perturbation wave
vector α at the initial time t = 0; the parameter µ = k2/Re represents combined
effects of viscosity and the wavenumber k, while Pr is responsible for the effects of
heat conduction andRi is the Richardson number defined above in § 2. We investigate
the influence of the parameters Ri, Pr , µ = k2/Re and θ0 on the stability properties
of the nonlinear system (4.6). The second angular parameter φ is deliberately omitted
for simplicity in exposition, since (as we will show later) it does not play a significant
role in the stability analysis. As in §4.1, the strongest instabilities are located in the
φ = π/2 plane of the parameter space and are purely two-dimensional.

As in our earlier experiments for the inviscid, non-heat-conducting fluid, we tracked
the trace of the fundamental matrix associated with (4.6) to determine whether or
not the perturbations were stable. The large-scale vorticity ω was determined from
the pendulum equations (2.17) and entered the equations as an external input.

We varied the Prandtl number from Pr = 1 to Pr = 200. These numbers roughly
cover the range of physically relevant values. For each value of Pr we computed the
trace of the fundamental matrix for (4.6) at Richardson numbers Ri varying from
0.25 to 10. For each individual value of Ri we present a contour diagram of trace
in the (θ0, µ)-plane. Then, we put together all such contour diagrams for Richardson
numbers in the range specified above to create stability diagrams in the three variables
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Figure 9. Effects of viscosity and heat conduction on instabilities at various Richardson numbers
and Prandtl number, Pr = 200. The contours of fundamental matrix trace, trR = 2 (bold curves),
separate regions of stability and instability. The x-axis represents the θ0-parameter while the y-axis
is the parameter log(µ), with µ = k2/Re representing effective viscosity. The Richardson numbers
depicted in (a), (b), (c), and (d) respectively are Ri = 0.25, 0.5, 1 and 3.

θ0, µ and Ri. Surfaces shown on these three-dimensional diagrams separate stable and
unstable regions. For Pr = 200, figure 9 shows contours of fundamental matrix trace
in the (θ0, µ)-plane for the specified values of Richardson numberRi. Figure 10 shows
stability and instability regions in full (θ0, µ,Ri)-space for Pr = 200.

In the numerical simulations we observed that flows with various values of Prandtl
number, Pr < 200, exhibit qualitatively similar behaviour to the case Pr = 200; we
omit the corresponding illustrations for brevity purposes.

We summarize our main conclusions as follows:
(a) Instabilities of two-dimensional plane wave perturbations to basic single vortex

motions are present at all values of Richardson number, including those much larger
than 1

4
;

(b) plane waves with large wavenumbers experience stronger dissipation by viscos-
ity and heat conduction; however, instabilities are always present at sufficiently small
values of the parameter µ = k2/Re;

(c) the Prandtl number Pr plays no significant role in the qualitative stability
pictures for the range 1 6 Pr 6 200.

Next, we illustrate that two-dimensional instabilities lying in the (x1, x3)-plane play
the dominant role, exactly as in the inviscid, non-heat-conducting case. We present
a few computations of the fundamental matrix trace when the parameters φ and θ0

defining the wave vector α (see (4.2)) both take the whole range of values between
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Figure 10. Effects of viscosity and heat conduction on instabilities at various Richardson numbers
and Prandtl number, Pr = 200. The surface shown in this figure separates stability (above the
surface) and instability (under the surface) regions.

0 and π, at several different values of the other parameters (µ, Re, Pr). The contour
diagrams are shown in figure 11. These plots show that highest growth rates occur
along the line φ = π/2, α2 = 0, i.e. for the two-dimensional perturbations.

As in § 4.1, we comment on the physical nature of the instabilities discussed above.
Single vortex flows are most unstable to two-dimensional plane wave perturbations in
the (x1, x3)-plane. The strongest instabilities we have observed are growing oscillations
with twice the period of the basic vortex motion. Perturbations with large enough
wavenumbers k do not yield instabilities, since they get suppressed the most by the
dissipative mechanisms.

5. Stability of vortex motions in a shear

In this section, we continue to study the stability of elementary flows introduced in
§ 2.1 and described by (2.6). In § 4 we restricted ourselves to the simple vortical flows
with no vertical shear. Here, we investigate stability in the more general case, when
both a vortex and a shear are present in the elementary flow, with and without the
effects of viscosity and heat conduction.

5.1. Stability of simple shears

Here we check the stability of the simple shears (2.31) when Ri > 1
4
, with the

definition of Richardson number Ri introduced in and below (2.13) of § 2.2. The
evolution equations (3.4) for the nonlinear perturbations of shears including viscosity
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Figure 11. Regions of stability and instability for three-dimensional perturbations for different initial
orientations of perturbation wave vector. The bold contours, tr R = 2, separate stable and unstable
regions. The parameters are (a) Ri = 1, Pr = 1, µ = 0.0001, (b) Ri = 1, Pr = 100, µ = 0.0001, (c)
Ri = 1, Pr = 10, µ = 0.01, and (d) Ri = 10, Pr = 100, µ = 0.1.

and heat conduction effects take the following form:

α̇1 = 0, α̇2 = 0, α̇3 = −σα1,

Ȧ1 = −σA3 + 2
α2

1

|α|2σA3 +
α1α3

|α|2 B − FrRe−1k2|α|2A1,

Ȧ2 = 2
α1α2

|α|2 σA3 +
α2α3

|α|2 B − FrRe−1k2|α|2A2,

Ȧ3 = 2
α1α3

|α|2 σA3 +

(
α2

3

|α|2 − 1

)
B − FrRe−1k2|α|2A3,

Ḃ = A3 − FrPr−1Re−1k2|α|2B.



(5.1)

We note that the Froude number for the elementary shear flows (2.31) is related to
the Richardson number through Ri = 2/(3σ2) = 2/(3Fr2). The equations for the
wave vector α can be easily solved in this case,

α1(t) = α∗1, α2(t) = α∗2, α3(t) = α∗3 − σα∗1t. (5.2)
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Since the equations for A3(t) and B(t) decouple from the first two amplitude equations
in (5.1), we will focus our consideration on the stability of A3 and B. The two other
perturbation amplitudes, A1(t) and A2(t), turn out to be slave modes and cause no
additional instabilities. When α∗1 = 0 and the effects of diffusion are ignored, the
amplitude equations take an especially simple form,

Ȧ3 =

(
(α∗3)2

(α∗2)2 + (α∗3)2
− 1

)
B,

Ḃ =A3.

 (5.3)

Clearly, (5.3) produce stable oscillations with the frequency (1− (α∗3)2/((α∗2)2 +(α∗3)2))1/2

provided α∗2 6= 0. It is easy to check that the two other amplitudes, A1 and A2, in this
case also exhibit oscillatory behaviour. A very special set of solutions arises when
both α∗1 and α∗2 are set equal to zero. Here, vertical shears of horizontal velocity v1

are perturbed in the vertical direction and typically produce a linear growth in time
(the vertical component of the perturbation velocity A3 needs to be non-zero). This
type of instability for stratified shear flows has been discussed earlier by Criminale
& Cordova (1986). We emphasize that marginal linear instability of this type differs
greatly from the exponential instability of simple vortices we observed in §§4.1 and
4.2 and is typically destroyed by arbitrarily small dissipation. The existence of this
marginally stable growing mode with α∗1 and α∗2 vanishing does not contradict the
Miles–Howard theorem for Ri > 1

4
; the Miles–Howard theorem involves flow fields

which are bounded by parallel walls in the vertical direction where the normal velocity
of the fluid flow must vanish and these vertically propagating modes clearly violate
the boundary conditions.

According to the Miles–Howard theorem, we anticipate that all shears with σ
(or, equivalently, Fr) smaller than a certain cut-off value must be stable. Since the
definition of the Richardson number differs from the traditional definition via the
vertical gradient of horizontal velocity used by Miles and Howard, equal in our case
to 1/σ2, it is very natural to pick σ = 2 as the critical value defining Ri = 1

4
. We

have numerically investigated the stability of shears with several values of σ < 2 with
an emphasis on non-normal transient growth at moderate times. Our calculations
confirm that shears are always marginally stable. In the inviscid, non-heat-conducting
case there is a special mode, with amplitudes growing linearly in time, corresponding
to perturbations with α2 = 0. In a typical perturbation with α∗2 different from zero,
we observed a considerable transient growth; solutions then eventually levelled off.
The non-trivial α2-component in a wave vector tends to stabilize the flow. We omit
detailed figures demonstrating these effects. The special mode is isolated, since even
a small amount of noise in the α2-component of the wave vector destroys it by
generating rapid large-amplitude oscillations. It is clear that the special mode can
also be destroyed by dissipation as noted earlier (Criminale & Cordova 1986).

Except for the special mode, the simple shears withRi > 1
4

are stable to plane wave
perturbations. In the next section we will study the stability of general elementary flows
described in § 2.4, involving both shear and vortex motion. Some of the perturbations
exhibit non-normal behaviour, with substantial transient growth over relatively few
buoyancy times. A useful gauge of the stability properties of elementary flows is given
by the ratio

rmax = max
t>0

|C (t)|
|C (0)| , (5.4)
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where C (t) is the vector of perturbation amplitudes. To quantify the non-normal
transient growth at short times, we use the typical value of rmax for shears in the
interval 0 6 t 6 50; it roughly equals 50. We used this value as a threshold to
separate solutions with stable (rmax < 50) and significantly non-normal (rmax > 50)
behaviour in a fashion consistent with the stability of shear flows. Clearly, the shear
flows themselves are always stable with this definition.

5.2. Stability of perturbations to general elementary flows

The most general case of the elementary flows (2.6) involves both a vortical and a
shear component. There, (3.4) describe the time evolution of the perturbation wave
vector α, velocity and density amplitudes A and B, and take the following form:

α̇1 =
ω − σ

2
α3, α̇3 = −ω + σ

2
α1,

Ȧ1 =−ω + σ

2
A3 +

α1

|α|2 (A1α3(σ − ω) + A3α1(σ + ω))

+
α1α3

|α|2 B − FrRe−1k2|α|2A1,

Ȧ3 =
ω − σ

2
A1 +

α3

|α|2 (A1α3(σ − ω) + A3α1(σ + ω))

+

(
α2

3

|α|2 − 1

)
B − FrRe−1k2|α|2A3,

Ḃ =−A1b1 − A3b3 − FrPr−1Re−1k2|α|2B.



(5.5)

The Richardson number for general elementary flows (2.6) is defined in §2.2 and can
be recovered for each value of the Froude number and the strain parameter σ. The
contour diagram of the Richardson number in the (Fr , σ)-plane is shown in figure 4.

The equations above are purely nonlinear; therefore, the simplifications which lead
to the use of Floquet theory for the simple vortex case considered earlier in § 4 are
no longer applicable. Instead, we perform direct numerical simulations of (5.5). Since
α2 and A2 decouple from the rest of the variables, we omit them for simplicity. In
our simulations, we selected a few ‘typical’ values of the Richardson number, ranging
over Ri = 0.25, 1, 3, 5, 10. For each of these values we picked several pairs (Fr , σ)
generating elementary solutions with the selected Richardson number (such pairs lie
on the level lines of Richardson number shown in figure 4.

First we consider the situation without viscosity and heat conduction. It clearly
follows from the last three equations in (5.5) that the length of a perturbation wave
vector |α| is irrelevant for the stability studies, since α enters the equations only through
homogeneous terms in α. Therefore, it is sufficient to consider initial conditions for
α in the form of a unit vector, with the two angular parameters φ and θ0 defining
its initial direction. Our simulations demonstrated that the parameter φ, describing
initial deflection of the wave vector from the (x1, x3)-plane, does not lead to the most
unstable modes and therefore can be omitted for simplicity. For the perturbation
amplitudes, we restricted initial conditions to the following ‘typical’ sets:

(A1, A3, B) =

 (1, 0, 0)
(0, 1, 0)
(0, 0, 1).
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To investigate the stability of an elementary solution corresponding to a pair (Fr , σ)
we used forty homogeneously spaced directions of a wave vector α in the (x1, x3)-
plane, along with the initial conditions for the perturbation amplitudes A1, A3, B as
above.

Here is the summary of our study in the inviscid, non-heat-conducting case:
(i) Of all elementary flows we have considered, only the vortex flows (2.14) are

genuinely (exponentially) unstable to the plane wave perturbations in the absence of
viscosity and heat conduction.

(ii) Two-dimensional perturbations located in the (x1, x3)-plane (α2 = 0) always
produce the most significant growth.

(iii) Perturbations to all elementary solutions with σ 6= 0 have a special marginally
stable mode. It corresponds to perturbations with initial conditions α(0) = (0, 0, α3(0)).
For flows with small Richardson number (with a typical Ri smaller than 0.1) this
mode is exponentially unstable, but as the Richardson number increases, this mode
converges to a linear growth. This special mode is easily destroyed by even a tiny
amount of the α2-component. These deflections of the wave vector from the (x1, x3)-
plane generate large amplitude fluctuations at larger times saturating to a constant
or to stable oscillations.

(iv) There exists a set of elementary flows, whose perturbations present substantial
(exponential) transient growth at short times and then level off. Corresponding to the
pure vortical flows of § 4, these flows are located in a strip in the (Fr , σ)-plane around
the line σ = 0. The width of the strip with such non-normal behaviour changes
with the Richardson number, increasing for the small values of Ri. The approximate
width of this region measured with respect to the threshold, rmax from (5.4) satisfying
rmax > 50, introduced above is equal to

|σ| 6 0.5 for Ri = 1,

|σ| 6 0.1 for Ri = 5,

|σ| 6 0.05 for Ri = 10.

 (5.6)

Effect of viscosity and heat conduction

In the presence of viscosity and heat conduction for solutions of the system (5.5),
the length of the wave vector α changes in time. In fact, the numerical experiments
demonstrate that |α| grows roughly linearly in time. According to (5.5), this growth
enhances the influence of the dissipative forces. Direct numerical integration of
the system (5.5) confirms that viscosity is much more effective at large Richardson
numbers in suppressing non-normal growth in the region with substantial non-normal
behaviour described in (5.6).

6. Concluding discussion
We briefly summarize the main results contained in this paper. The elementary

time-periodic stratified flows with vorticity and no strain flow given in (1.2) and
(1.3) are unstable at all Richardson numbers. As documented in § 4, parametric two-
dimensional instability is the dominant mode of growth and this behaviour persists for
all Reynolds numbers and a wide range of Prandtl numbers. In order to understand
the robustness of the phenomena present in this instability and its potential physical
significance, it is of interest to assess the occurrence of similar instabilities in a
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wider class of elementary stratified flow fields. Thus, in §5, we extended the stability
considerations to the most general case of elementary stratified flows described in
(2.6). The elementary flows with non-zero strain are always (marginally) stable and
never exhibit exponential amplification of perturbations at arbitrarily long times for
the wide range of Froude numbers and strain rates tested. As for the case of shear
flows (Criminale & Cordova 1986) the elementary flows of general form have a
special marginal mode, with perturbation amplitudes growing linearly in time (in
the absence of dissipative effects). In addition to this effect, suitable perturbations
of elementary solutions located in a band in the (Fr , σ)-plane near the line σ = 0
experience substantial exponential growth at short times and then level off. This
regime of elementary flows was described in § 5 through quantitative comparison
with transient behaviour in shear flows. Such elementary flows with significant non-
normal transient behaviour become important in the framework of the full Boussinesq
equations where the large perturbation amplitudes in the short-time regime can trigger
nonlinear mechanisms of instability which cannot be explained by linear theory.

In the elementary flows introduced in § 2 with either nonlinear instability or non-
normal transient growth at large Richardson numbers, it is obviously very interesting
to determine the nonlinear saturation of such instabilities through careful numerical
simulation. In a preliminary numerical study Majda & Shefter (1998) examined the
nonlinear saturation of instability for the elementary flows (1.2) and (1.3) for Ri = 5.
Substantial local density overturning with nonlinear Kelvin–Helmholtz instability
developed spontaneously from random initial data through the linearized instability
mechanism described here.

The consequences of the nonlinear saturation of the linear instabilities discussed
here regarding overturning and mixing are the important physical facts needed
in a quantitative assessment of the effectiveness of the Lilly–Smagorinsky eddy
diffusivity in stably stratified flow as well as potential improvements for large-eddy
simulations. The authors are currently investigating these issues through detailed
numerical simulation which will be reported elsewhere.

Appendix. Derivation of exact solution identities
In this Appendix we show the existence of a family of exact solutions to the

Boussinesq equations by generalizing the procedure of Craik & Criminale (1986). We
then systematically derive the (ordinary differential) equations that simplified terms
in these solutions must satisfy in order for the Boussinesq equations to hold. We start
with non-rotating Boussinesq equations with viscosity and heat conduction:

Dv

Dt
=−∇p− g

ρb
ρe3 + ν∆v,

div v= 0,

Dρ̃

Dt
= κ∆ρ̃


(A 1)

(where ρ = ρb + ρ̃) and assume that there exist exact solutions in the form of
superposition of linear-in-space solutions and nonlinear plane waves:

v(x, t) =D(t)x+ 1
2
ω(t)× x+ A(t)F(α(t) · x),

ρ̃(x, t) = ρb + b(t) · x+ B(t)F ′(α(t) · x),

p(x, t) = 1
2
P̂(t)x · x+ P (t)G(α(t) · x).

 (A 2)
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Here, the relationships among the waveform functions F(s), F ′(s) and G(s) are to be
determined; D(t) is an arbitrary 3 × 3 symmetric matrix, so that ω = curl v. We
introduce the antisymmetric matrix Ω by the relation ω(t)×x = Ω(t)x. Let the matrix
V = D+ Ω so that

v(x, t) = V (t)x+ A(t)F(α · x). (A 3)

The first constraint is incompressibility, the second equation in (A 1), which under the
ansatz, (A 2), becomes div v = trD+ A · αF ′. As F is arbitrary, we must require that
D be trace free,

Condition 1: trD(t) = 0

and enforce the remaining condition

A(t) · α(t) = 0 (A 4)

for all times. This will not yet be required, as we need to see how α evolves in a
divergence-free field in order to determine a suitable condition. So we will assume
this fact for now and later show it to be true. Looking now at the density equation,
the third in (A 1), we find

0 = −κ∆ρ̃+
Dρ̃

Dt

=
db

dt
· x+

dB

dt
F̃ + B

dα

dt
· xF̃ ′ + v · b+ Bv · αF̃ ′ − κB|α|2F̃ ′′.

If we insert our ansatz, (A 2), for v into this equation, we find

0 =

(
db

dt
+ V Tb

)
· x+

(
dB

dt
+ A · b

)
F̃ + B

(
dα

dt
+ V Tα

)
· xF̃ ′

− (κ|α|2B) F̃ ′′ + B(A · α)F̃F̃ ′. (A 5)

By the incompressibility condition in (A 4) the last term is identically zero. In order
to balance the term proportional to F̃ ′′, we will need to assume it is identically zero
or else proportional to one of the other groups of terms in the equation. Choosing
F̃ ′′ = 0 would amount to choosing F̃(y) = cy, which yields perturbations unbounded
in space, a physically unreasonable assumption. Similarly, choosing F̃ ′′ = ±kF̃ ′ or
F̃ ′′ = k2F̃ would lead to solutions F̃(y) = e±ky which would be unbounded and thus
unacceptable. We are therefore led to the additional assumption:

Condition 2: F̃ ′′ = −k2F̃ .

Hence, F̃ must be sinusoidal with wavenumber k,

F̃(y) = cos(ky − θ0).

This equation thus reduces to

0 =

(
db

dt
+ V Tb

)
· x+

(
dB

dt
+ A · b+ k2κ|α|2B

)
F̃ + B

(
dα

dt
+ V Tα

)
· xF̃ ′. (A 6)

The three groups of terms are linearly independent and must be separately set to
zero, leading to the three equations for b, B, and α:

Condition 3:
db

dt
= D(t)b(t) + 1

2
ω(t)× b(t),
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Condition 4:
dB

dt
= −b(t) · A(t)− κk2|α|2B,

Condition 5:
dα

dt
= −V T (t)α(t).

We now compute the velocity terms of the momentum equation (the first equation
in (A 1)):

∂v

∂t
=

dV

dt
x+

dA

dt
F + A

dα

dt
· xF ′,

v · ∇v = v · V + A(Vx · α)F ′
= V 2x+ A · VF + A(Vx · α)F ′ + A(A · α)FF ′,

ν∆v = ν|α|2F ′′A.
Again the last term in the convective part is identically zero because of the incom-
pressibility condition (A 4). The pressure and density terms in the equations are

∇p = P̂x+ PαG′, (A 7)
gρ

ρb
e3 =

g

ρb
(b⊗ e3)x+

g

ρb
Be3F̃ . (A 8)

Combining these terms, we reduce the momentum equation to(
dV

dt
+ V 2 + P̂ + b⊗ e3

)
x+

(
dA

dt
+ A · V

)
F + PαG′

+
gB

ρb
e3F̃ + A

(
dα

dt
+ V Tα

)
· xF ′ = ν|α|2F ′′A. (A 9)

Note that the coefficient of F ′ in the above is identically zero by Condition 5. This
equation must hold for arbitrary F and G, so that the coefficient of x must be forced
to vanish. Equation (A 9) can be separated into a symmetric and anti-symmetric parts,
which form the next two conditions.

Condition 6:
dω

dt
= D(t)ω(t) +

g

ρb

−b2

b1

0

 ,

Condition 7: −P̂ =
dD
dt

+D(t)2 + Ω(t)2 +
g

2ρb
(e3 ⊗ b+ b⊗ e3) .

This serves to define P̂(t) in terms of other variables which participate directly in the
dynamics.

The remaining part of the momentum equation (A 9) is thus(
dA

dt
+ A · V

)
F + PαG′ +

gB

ρb
e3F̃ = ν|α|2F ′′A.

Then the necessary relationship among the waveforms must be

Condition 8: F(y) = F̃(y) = G′(y) =
−F ′′(y)

k2
= cos(ky − θ0).

This relationship yields that

dA

dt
+ A · V + Pα+

gB

ρb
= −νk2|α|2A. (A 10)
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The last expression still contains the pressure P which we may eliminate as a
dynamical variable as follows. Returning to the divergence-free condition, we first
enforce that our initial condition is divergence free,

Condition 9: α · A|t=0 = 0,

and then for it to remain zero its derivative must vanish

d

dt
(A · α) = 0.

Now we may use Condition 5 and (A 10) to obtain

−
(

dA

dt
· α+ A · dα

dt

)
= (VA) · α+ P |α|2 +

gB

ρb
α3 + A · (V Tα) + νk2|α|2A · α.

Note that for consistency, the final term must be set to zero, so that the pressure is
unchanged from before:

Condition 10: −P (t) =
2(V Tα · A)

|α|2 +
g

ρb

Bα3

|α|2 + νk2A · α.

Inserting the expression for the pressure back in the equation for A yields our final
condition:

Condition 11:
dA

dt
= −VA+ α

2(V Tα · A)

|α|2 +
g

ρb

[
α3

|α|2 α− e3

]
B − νk2|α|2A.

In summary, we have proven the following:

Theorem 1. The viscous, heat-conducting Boussinesq equations in (A 1) have special
solutions of the form

v(x, t) =D(t)x+ 1
2
ω(t)× x+ A(t)F(α · x),

ρ̃(x, t) = ρb + b · x+ B(t)F(α · x),

p(x, t) = 1
2
P̂(t)x · x+ P (t)G(α · x),

 (A 11)

provided the following conditions hold:

trD(t) = 0, α · A|t=0 = 0, F(y) = G′(y) = cos(ky − θ0),

db

dt
=D(t)b(t) + 1

2
ω(t)× b(t), dB

dt
= −b(t) · A(t)− κk2|α|2B,

dα

dt
=−V T (t)α(t),

dω

dt
= D(t)ω(t) +

g

ρb

−b2

b1

0

 ,

dA

dt
=−VA+ α

2(V Tα · A)

|α|2 +
g

ρb

[
α3

|α|2 α− e3

]
B − νk2|α|2A,



(A 12)
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in which case the pressure can be recovered from

−P̂ =
dD
dt

+D(t)2 + Ω(t)2 +
g

2ρb
(e3 ⊗ b+ b⊗ e3) ,

−P (t) =
2(V Tα · A)

|α|2 +
g

ρb

Bα3

|α|2 + νk2A · α,

V (t) =D(t) + Ω(t),


(A 13)

with Ωh = 1
2
ω × h for any h.

Remark. The same analysis holds for the exact solutions of the inviscid, non-heat-
conducting Boussinesq equations with only one modification. One does not have to
require waveform function F(y) to be sinusoidal (compare with Condition 2); in fact,
any smooth function F(y) will satisfy the Boussinesq equations.

Andrew Majda is partially supported by research grants, NSF DMS-9625795,
ONR N00014-96-0043, ARO DAAH04-95-1-0345. Michael Shefter is supported as a
post-doc through grants NSF DMS-9625795, ONR N00014-96-0043.

REFERENCES

Bayly, B. J. 1986 Three-dimensional instability of elliptical flow. Phys. Rev. Lett. 57, 2160–2163.

Bayly, B. J., Holm, D. D. & Lifschitz, A. 1996 Three-dimensional stability of elliptical vortex
columns in external strain flows. Phil. Trans. R. Soc. Lond. A 354, 895–926.

Bretherton, C. S., MacVean, M. K., Bechtold, P., Chlond, A., Cotton, W. R., Cuxart, J.,
Cuijpers, H., Khairoutdinov, M., Kosovic, B., Lewellen, D., Moeng, C.-H., Siebesma,
P., Stevens, B., Stevens, D. E., Sykes, I. & Wyant, M. C. 1998 An intercomparison of
radiatively-driven entrainment and turbulence in a smoke cloud, as simulated by different
numerical models. Submitted to Q. J. R. Met. Soc.

Craik, A. D. D. 1989 The stability of unbounded two- and three-dimensional flows subject to body
forces: some exact solutions. J. Fluid Mech. 198, 275–292.

Craik, A. D. D. & Allen, H. R. 1992 The stability of three-dimensional time-periodic flows with
spatially uniform strain rates. J. Fluid Mech. 234, 613–628.

Craik, A. D. D. & Criminale, W. O. 1986 Evolution of wavelike disturbances in shear flows: a
class of exact solutions of the Navier-Stokes equations. Proc. R. Soc. Lond. A 406, 13–26.

Criminale, W. O. & Cordova, J. Q. 1986 Effects of diffusion in the asymptotics of perturbations
in stratified shear flow. Phys. Fluids 29, 2054–2060.

Drazin, P. G. 1977 On the instability of an internal gravity wave. Proc. R. Soc. Lond. A 356,
411–432.

Farrell, B. & Ioannou, P. 1993 Perturbation growth in shear flow exhibits universality. Phys. Fluids
A 5, 2298–2300.

Forster, G. K. & Craik, A. D. D. 1996 The stability of three-dimensional time-periodic flows with
ellipsoidal stream surfaces. J. Fluid Mech. 324, 379–391.

Hochstadt, H. 1975 Differential Equations. Dover.

Howard, L. N. 1961 Note on a paper of John W. Miles. J. Fluid Mech. 13, 158–160.

Lavelle, J. W. & Smith, D. C. 1996 Effects of rotation on convective plumes from line segment
source. J. Phys. Oceanogr. 26, 863–872.

Lifschitz, A. & Hameiri, E. 1991 Local stability conditions in fluid dynamics. Phys. Fluids A 3,
2644–2651.

Lilly, D. K. 1967 The representation of small-scale turbulence in numerical simulation experiments.
In Proc. IBM Scientific Computing Symp. on Environmental Science, pp. 195–210.

Lombard, P. N. & Riley, J. J. 1996 On the breakdown into turbulence of propagating internal
waves. Dyn. Atmos. Oceans 23, 345–355.



350 A. J. Majda and M. G. Shefter

Majda, A. J. & Shefter M. G. 1998 The instability of stratified flows at large Richardson numbers.
Proc. Natl Acad. Sci. USA 95, 7850–7853.

Miles, J. W. 1961 On the stability of heterogeneous shear flows. J. Fluid Mech. 10, 496–508.

Press, W. H., Teukolsky, S. A., Vetterling, W. T. & Flannery, B. P. 1992 Numerical Recipes, 2nd
edn. Cambridge University Press.

Siegel, D. A. & Domaradzki, J. A. 1994 Large-Eddy simulation of decaying stably stratified
turbulence. J. Phys. Oceanogr. 24, 2353–2385.

Smagorinsky, J. 1963 General circulation experiments with the primitive equations. I. The basic
experiment. Mon. Weath. Rev. 91, 99–164.

Tabor, M. 1989 Chaos and Integrability in Nonlinear Dynamics. An Introduction. John Wiley & Sons.


